I am broadly interested in cosmology and astrophysics. My current research focuses on the late universe and how to better understand and predict the formation of large scale structure. I have also done previous work on CMB physics.

Gravitational dynamics

Dark matter is typically modelled as a cold collisionless fluid, which is hugely successful at large scales. However, to understand bound structures, the perfect fluid model must break down, as different streams of dark matter can intersect, causing the distribution to no longer have single valued velocity. Better understanding the dynamics of dark matter within this multistream region is critical to understanding the smaller scale effects of large scale structure. My work focuses on using techniques inspired by the quantum-classical correspondence to model cold dark matter beyond the simple perfect fluid approximation.

Clustering statistics

Because of the nonlinearities of gravitational interaction, even Gaussian initial conditions evolve into highly non-Gaussian distributions over time. Finding a set of statistics that are easy to measure, theoretically under control, and consisely capture interesting physics is not trivial. My work focuses on accurately predicting simple choices of statistic, for example the one point function of the density field, and trying to wrestle down their dependence on fundamental physics.

Conferences and workshops


Date Conference/Workshop Contribution
4 – 8 Jan 2021 Rise of field theory workshop Attendance
6 – 7 Jan 2021 DEX-XVII Attendance
11 – 15 Jan 2021 STFC School for New Students in Astronomy Short Talk (slides, Twitter thread)
12 – 16 Apr 2021 BritGrav21 Short Talk


Date Conference/Workshop Contribution
24 Aug – 4 Sep 2020 Cosmology from Home Attendance


You can find my papers on: arXiv, NASA ADS, iNSPIRE HEP, or through my ORCiD profile.


Year Title Authors
2020 A minimal power-spectrum-based moment expansion for CMB B-mode searches arXiv JCAP S. Azzoni, M. H. Abitbol, D. Alonso, A. Gough, N. Katayama, T. Matsumura